Supporting Information Increased GM-CSF-producing NCR⁻ ILC3s and neutrophils in the intestinal mucosa exacerbate inflammatory bowel disease Yuna Chang, Ju Whi Kim, Siyoung Yang, Doo Hyun Chung, Jae Sung Ko, Jin Soo Moon, Hye Young Kim **Supplementary figure 1.** Gating strategy and the comparison of distribution of ILCs between Cronh's disease and ulcerative colitis. **(a)** Gating strategy for ILC1s (CD45 $^+$ Lin $^-$ CD127 $^+$ CRTH2 $^-$ c-kit $^+$ NKp44 $^-$), ILC2s (CD45 $^+$ Lin $^-$ CD127 $^+$ CRTH2 $^+$), NCR $^+$ ILC3s (CD45 $^+$ Lin $^-$ CD127 $^+$ CRTH2 $^-$ c-kit $^+$ NKp44 $^+$), and NCR $^-$ ILC3s (CD45 $^+$ Lin $^-$ CD127 $^+$ CRTH2 $^-$ c-kit $^+$ NKp44 $^-$). **(b)** The percentage of each subset of ILCs in colonoscopic biopsies of non-IBD subjects (n=30), cronh's disease with quiescent (n=38), and active status(n=22). **(c)** The percentage of each ILC subset in colonoscopic biopsies of non-IBD subjects (n=30), ulcerative colitis with quiescent (n=11), and active status (n=7). Data are presented as mean \pm SD (One-Way ANOVA). $^*P < 0.05$, $^**P < 0.01$, $^**P < 0.005$ <$ **Supplementary figure 2.** Correlation analysis between subsets of ILCs and myeloid cells. **(a)** Correlation of NCR⁺ ILC3s with dendritic cells, macrophages, and eosinophils in non-IBD subjects and patients with IBD. **(b)** Correlation of NCR⁻ ILC3s with dendritic cells, macrophages, and eosinophils in non-IBD subjects and patients with IBD. **(c)** Correlation of ILC1s with neutrophils, eosinophils, dendritic cells, and macrophages in non-IBD subjects and patients with IBD. The *r* and *P*-values are shown in the panel (Spearman's correlation test). **Supplementary figure 3.** Altered immune cells in mouse models of colitis. **(a)** Gating strategy for LTis (CD45*Lin-CD127*RORγt*CD4*), NCR* ILC3s (CD45*Lin-CD127* RORγt*CD4-NKp46*), and NCR- ILC3s (CD45*Lin-CD127*RORγt*CD4-NKp46*). **(b)** Representative flow cytometry dot plot of eosinophils (CD45*CD11b*Siglec-F*), dendritic cells (CD45*CD11c*I-Ab*), and macrophages (CD45*F4/80*) in the colon at day 5 post induction with DSS. **(c)** The percentage of eosinophils, dendritic cells, and macrophages in the colon of control and DSS-induced mice. Data are presented as mean ± SEM (Student's *t*-test). Data were pooled from two independent experiments with n=5 per group. **(d)** Representative flow cytometry dot plot of eosinophils, dendritic cells, and macrophages in the colon at day 7 post induction with anti-CD40. **(e)** The percentage of eosinophils, dendritic cells, and macrophages in the colon of control and anti-CD40-induced mice. Results are presented as mean ± SEM (The student's *t*-test). Data are presented as mean ± SEM (Student's *t*-test). Data representative of two independent experiments with control (n=7) and anti-CD40 (n=8). **P* < 0.05, ****P* < 0.01, ****P* < 0.005, *****P* < 0.001, and ns, not significant (*P* > 0.05). **Supplementary figure 4**. Immune cell kinetics in the colons of mice with DSS-induced colitis. **(a)** The kinetics of total ILCs, NCR⁺ ILC3s, and NCR⁻ ILC3s in the DSS-treated colon. Data are presented as mean \pm SEM (One-Way ANOVA). **(b–e)** The kinetics of neutrophils (b), eosinophils (c), dendritic cells (d), and macrophages (e) in the DSS-treated colon. Data are presented as mean \pm SEM (One-Way ANOVA). Data representative of two independent experiments with three or more mice per group. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.005, *****P < 0.005, ******P < 0.005, and ns, not significant (P > 0.05). **Supplementary figure 5**. Other cytokines produced by ILCs in mouse models of colitis. **(a, b)** Representative flow cytometry dot plots (a) and the percentage (b) of IL-17A, IL-17F, and IL-22-producing NCR- ILC3s from the colon of mice with DSS-induced colitis. Data are presented as mean ± SEM (Student's *t*-test). Data representative of three independent experiments with n=5 per group. **(c)** Quantitative PCR analysis of *CSF2*, *IL17A*, *IL17F*, and *IL22* in human colonoscopic biopsies of non-IBD subjects (n=11) and IBD patients with quiescent (n=15) and active (n=9) status. Data are normalized to *RPLP0*. Data are presented as mean ± SD (One-Way ANOVA). **(d, e)** Representative flow cytometry dot plots (d) and the percentage (e) of IFN-γ-producing ILC1s from the colon of mice with DSS-induced colitis. Data are presented as mean ± SEM (Student's *t*-test). Data representative of two independent experiments with n=4 per group. **P* < 0.05, ns, not significant (*P* > 0.05). **Supplementary figure 6**. The proportion of ILC3 subsets in GM-CSF-producing ILCs. (a) Gating strategy for subsets of ILC3s in GM-CSF+ ILCs. (b) Representative flow cytometry plots and the percentage of GM-CSF+ ILC3s from the colon of mice with DSS-induced colitis. (c) Distribution of LTi, NCR+ ILC3s, and NCR- ILC3s in GM-CSF+ ILC3s from the colon of mice with DSS-induced colitis. Data are presented as mean \pm SEM (Student's *t*-test). Data representative of three independent experiments with n=5 per group. ***P < 0.005. **Supplementary figure 7.** NCR⁺ ILC3s do not activate neutrophils. **(a)** Sorting strategy for NCR⁺ ILC3s (CD45⁺Lin⁻CD127⁺ST2⁻CD4⁻NKp46⁺) and NCR⁻ ILC3s (CD45⁺Lin⁻CD127⁺ST2⁻CD4⁻NKp46⁻). **(b)** The purity of sorted NCR⁺ ILC3s and NCR⁻ ILC3s is > 99%. **(c)** Neutrophils were isolated from bone marrow using magnetic-bead. **(d)** The purity of isolated neutrophils is > 89%. **(e, f)** Neutrophils and NCR⁺ ILC3s were co-cultured for 24 hours. The representative histogram (e) and MFI (f) of CD11b and CD62L on neutrophils. Data representative of two independent experiments. Data are presented as mean \pm SEM. **(g)** Neutrophils were isolated from bone marrow from naïve mice then stimulated with recombinant GM-CSF. The level of gene expression of *Tgfb* was measured at the indicated time point. Data are normalized to *Gapdh*. Data are presented as mean \pm SEM (One-Way ANOVA). Data representative of three independent experiments with n=3 per group. **(h)** mRNA expression of *TGFB* in human colonoscopic biopsies of non-IBD subjects (n=7) and IBD patients with quiescent (n=10) and active (n=7) status. Data are normalized relative to *RPLPO*. Data are presented as mean \pm SD (One-Way ANOVA). **P* < 0.05, ***P* < 0.01, ****P* < 0.005, *****P* < 0.001, and ns, not significant (*P* > 0.05). Supplementary figure 8. Flow chart of this study. ## **Supplementary table 1.** Demographics of the study population. | | IBD patient group | | | |-------------------|-----------------------|----------------------------|-----------------------| | | Crohn disease
n=64 | Ulcerative colitis
n=20 | Control group
n=30 | | Sex | | | | | Male | 44 | 13 | 18 | | Female | 20 | 7 | 12 | | Age, Mean(SD) | 15.8 (2.5) | 15.1 (2.8) | 12.2 (3.8) | | Clinical status * | | | | | Active | 32 | 12 | N/A | | Quiescent | 40 | 12 | N/A | ^{*}Six patients with Crohn's disease and four patients with ulcerative colitis had two consecutive colonoscopies.